Blood-brain barrier glucose transporter is asymmetrically distributed on brain capillary endothelial lumenal and ablumenal membranes: an electron microscopic immunogold study.

نویسندگان

  • C L Farrell
  • W M Pardridge
چکیده

It is generally assumed that there is symmetric distribution of the glucose transporter on the lumenal and ablumenal membranes of the brain capillary endothelial cell that makes up the blood-brain barrier (BBB) in vivo. However, the presence of brain endothelial tight junctions allows for asymmetric distribution of BBB plasma membrane proteins. Glucose transporter isoform 1 (GLUT-1), the principal glucose transporter at the BBB, was assessed in rat brain in the present studies using immunogold electron microscopy. The distribution of the immunoreactive GLUT-1 protein on the endothelial lumenal membrane, the ablumenal membrane, and the cytoplasmic compartment was 12%, 48%, and 40%, respectively, and no significant immunolabeling of the neuropil was measurable. These studies suggest (i) that GLUT-1 is asymmetrically distributed on the BBB plasma membrane with an approximately 4-fold greater abundance on the ablumenal membrane as compared to the lumenal membrane; (ii) that approximately 40% of the endothelial glucose transporter protein is contained within the cytoplasmic space, which provides a mechanism for rapid up-regulation of the transporter by altered distribution of transporter between cytoplasmic and plasma membrane compartments; and (iii) that no significant labeling of neuropil is found with antisera directed against the GLUT-1 protein. These studies also suggest mechanisms of regulation of glucose transport from blood to brain that involve differential distribution of the BBB glucose transporter in subcellular compartments of brain capillary endothelial cells.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Inner blood-retinal barrier GLUT1 in long-term diabetic rats: an immunogold electron microscopic study.

PURPOSE The GLUT1 glucose transporter mediates glucose entry into the endothelial cells of the inner blood-retinal barrier (BRB). In many cell types, exposure to high glucose concentrations or diabetes downregulates GLUT1. To determine whether long-standing diabetes alters the expression and distribution of inner BRB GLUT1, changes in immunoreactive retinal endothelial cell GLUT1 were studied i...

متن کامل

Restraint Stress-Induced Morphological Changes at the Blood-Brain Barrier in Adult Rats

Stress is well-known to contribute to the development of both neurological and psychiatric diseases. While the role of the blood-brain barrier is increasingly recognized in the development of neurodegenerative disorders, such as Alzheimer's disease, dysfunction of the blood-brain barrier has been linked to stress-related psychiatric diseases only recently. In the present study the effects of re...

متن کامل

Antibodies to blood-brain barrier bind selectively to brain capillary endothelial lateral membranes and to a 46K protein.

To begin elucidating the biochemical basis of the polarized membrane features of the blood-brain barrier (BBB), a series of immunochemical and immunoperoxidase studies were initiated with bovine brain microvessels that make up the BBB in vivo. A rabbit antiserum was prepared against isolated bovine brain BBB plasma membranes. The bovine microvessel plasma membranes were radioiodinated with chlo...

متن کامل

Glucose transport in brain and retina: implications in the management and complications of diabetes.

Neural tissue is entirely dependent on glucose for normal metabolic activity. Since glucose stores in the brain and retina are negligible compared to glucose demand, metabolism in these tissues is dependent upon adequate glucose delivery from the systemic circulation. In the brain, the critical interface for glucose transport is at the brain capillary endothelial cells which comprise the blood-...

متن کامل

Expression of the neonatal Fc receptor (FcRn) at the blood-brain barrier.

The blood-brain barrier (BBB) restricts transport of immunoglobulin G (IgG) in the blood to brain direction. However, IgG undergoes rapid efflux in the brain to blood direction via reverse transcytosis across the BBB after direct intracerebral injection. This BBB IgG transport system has the characteristics of an Fc receptor (FcR), but there is no molecular information on the putative BBB FcR. ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Proceedings of the National Academy of Sciences of the United States of America

دوره 88 13  شماره 

صفحات  -

تاریخ انتشار 1991